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Abstract

Existing rain image editing methods focus on either re-
moving rain from rain images or rendering rain on rain-
free images. This paper proposes to realize continuous con-
trol of rain intensity bidirectionally, from clear rain-free to
downpour image with a single rain image as input, with-
out changing the scene-specific characteristics, e.g. the di-
rection, appearance and distribution of rain. Specifically,
we introduce a Rain Intensity Controlling Network (RIC-
Net) that contains three sub-networks of background extrac-
tion network, high-frequency rain-streak elimination net-
work and main controlling network, which allows to con-
trol rain image of different intensities continuously by in-
terpolation in the deep feature space. The HOG loss and
autocorrelation loss are proposed to enhance consistency
in orientation and suppress repetitive rain streaks. Further-
more, a decremental learning strategy that trains the net-
work from downpour to drizzle images sequentially is pro-
posed to further improve the performance and speedup the
convergence. Extensive experiments on both rain dataset
and real rain images demonstrate the effectiveness of the
proposed method.

1. Introduction
Transforming the weather condition of images realisti-

cally is a knotty but attractive problem. Specifically, trans-
forming images between the rain and rain-free weather con-
ditions, i.e., deraining [9,38,39] and rain rendering [10,12],
enables us to remove rain from rain images or produce rain
effect on rain-free images. However, all these methods fo-
cus on directly transforming from a certain weather con-
dition to the other, without considering the bidirectional-
controlling capability, leaving an innovative problem, i.e.,
continuously tuning the rain intensities bidirectionally (de-
creasing or increasing), ranging from rain-free scene to
downpour with a single rain image as input.

In practice, the rains with different intensities exhibit
much different characteristics in the density of rain streaks,
the size of raindrops, and the thickness of fog. Meanwhile,
other scene-specific characters are supposed to be preserved
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Figure 1. The effect of bi-directional rain controlling. (a) Contin-
uous rain intensity control of the single rain image input (marked
with red rectangle). (b) The preserved rain characteristics.

with the changing of rain intensity, including the direc-
tion of rain in local area, the appearance of raindrops, and
the distribution, which mostly depend on the wind direc-
tion, illumination directions and camera parameters (e.g.,
focal length, point-of-focus and exposure time), as shown in
Fig. 1. Different from the simple and naive method that re-
moves the rain and renders new rain effect to form rain im-
ages with different rain intensities, our method can control
the intensity-dependent characters changing with the rain-
fall, while preserving the scene-specific features of the input
rain image, so that the generated rain images with different
intensities look consistent with the input rain image.

In this paper, a Rain Intensity Controlling Network
(RICNet) is proposed, which allows continuous and bi-
directional control of the rain from removal to rendering
with different intensities and similar scene-specific char-
acteristics from a given rain image. RICNet is composed
of three sub-networks, i.e, Background Extraction Network
(BEN), High-frequency Rain-streak Elimination Network
(HREN) and Main Controlling Network (MCN). Facilitated
by the background and fog related information extracted by
BEN and HREN, MCN could generate rain images of dif-
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ferent intensities continuously and bidirectionally with the
dual control of Parallel Gating Module (PGM) and Noise
Boosting Module (NBM), based upon a multi-level interpo-
lation framework. To preserve the scene-specific rain char-
acteristics and reduce the repetition of rain streaks gener-
ated by the rendering network, histogram of oriented gradi-
ent and autocorrelation loss are proposed. Besides, a decre-
mental training strategy that trains the network from down-
pour to drizzle images sequentially is also used to further
improve the performance of proposed method.

In particular, the main contributions of this paper are:
• We propose a rain intensity controlling network to con-

trol the rain continuously in a bi-directional manner
and preserve the scene-specific rain characteristics.

• We introduce the histogram of oriented gradient loss
and autocorrelation loss to preserve the directions of
rain streaks and suppress repetitive rain streaks. Decre-
mental training strategy is further designed to improve
the performance and speed up the convergence.

• We conduct extensive experiments on both synthetic
rain dataset and real rain images, and demonstrate the
effectiveness of the proposed method.

2. Related Work
Deraining Traditional deraining methods [9,21,22,34,37,
39] remove the rain with different intensities indiscrimi-
nately, which may lead to over/under-deraining for inputs
with large intensity difference. Yasarla et al. [37] construct
an uncertainty guided deraining network. Li et al. [21] pro-
pose a two-stage module for heavy rain removal. Recently,
rain intensity is considered in some deraining work [35,38].
Zhang et al. [38] build a raindrop-density classifier to esti-
mate the rainfall. Yang et al. [35] build a joint rain removal
network to jointly estimate the rain densities and derain.
These approaches could realize high quality rain removal,
while fail to control the rainfall with different intermedi-
ate intensities. Multi-stage based methods [8,15,23,26, 28]
remove the rain progressively, while the outputs of middle
stages are the intermediate results of deraining, which do
not correspond to rain images with intermediate intensities.
In this paper, we propose a continuous rain control network,
which could generate rain images of different intensities.
With the proposed method, we can not only remove the rain
in the rain image, but also generate rain images of interme-
diate intensities in a continuous way.

Rain Effect Rendering Approaches in different areas
have been proposed to generate rain images. Garg and Na-
yar [10] generate realistic rain streaks based on the anal-
ysis of rain appearance model. Halder et al. [12] design
a physics-based approach to render different levels of rain.
However, these rendering works highly depend on the phys-
ical parameters, e.g., scene structure, illumination condi-

tion, wind speed and direction, as well as the camera set-
tings, inapplicable to render rain images while preserving
the scene-specific features from the input rain images. In
this paper, we propose a rain control neural network that
could render the rain with different intensities while pre-
serving the scene-specific features.

Feature Interpolation Feature interpolation methods al-
low continuous image transform [13, 27, 30, 31] via inter-
polation in the feature space. He et al. [13] propose adap-
tive feature modification layers to modulate between two
image restoration levels. Shoshan et al. [27] achieve inter-
polation by adding tuning-blocks to main network. Wang
et al. [31] apply linear interpolation in the parameter space
of networks. In addition, interpolation among multiple ef-
fects are proposed [4, 7, 14, 16, 24]. Huang et al. [14] feed
the decoder with a set of weighted style features to achieve
mixed styles. Li et al. [24] create new textures via interpo-
lating corresponding selection units. Jing et al. [16] propose
gating functions to alter multiple stroke sizes at one time.
These methods can achieve general style transform, how-
ever, they can not be directly incorporated for different rain
intensities transform since specific design for rain control
scenarios should be considered. In this paper, we propose
the RICNet to interpolate rain images with different inten-
sities continuously with scene-specific characteristics.

3. Rain Intensity Controlling Network
The proposed RICNet is introduced in details including

the network architecture, loss function and training strategy.

3.1. Network Architecture
As shown in Fig. 2, the overall architecture of RICNet

is composed of three main sub-networks including back-
ground extraction network (BEN), high-frequency rain-
streak elimination network (HREN), and main controlling
network (MCN). Specifically, MCN plays the main role in
controlling the rain with bi-directional scene-specific rain
modulation and it is constructed with core modules of multi-
level feature extraction, parallel gating module (PGM) and
noise boosting module (NBM). BEN and HREN are pro-
posed to provide the background and fog information to fa-
cilitate MCN in controlling the rain with clear background
and realistic fog rendering.

BEN BEN is designed to extract the background informa-
tion, and provide the intermediate information to MCN for
rain rendering. It is designed based on generative adver-
sarial network (GAN) [11]. The generator is constructed
in a coarse-to-fine way. The prepositive coarse structure is
designed to remove the rain coarsely, and the fine structure
(U-net) fed with the coarse derained and original input is ap-
plied to refine the deraining. To generate rain images with
sufficient background details, the features in the skip layers
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Figure 2. The overall architecture of RICNet, composed of BEN, HREN and MCN.

of the refining network of BEN are transmitted to the skip
layers of MCN. Additionally, the output of BEN is not only
sent to the input of MCN, but also the rain free branches
(the branches used for generating the rain-free images) of
the PGMs in MCN. The nearest-neighbor interpolation is
used to downsample the output of BEN to the feature sizes
of these branches. The specific way of information trans-
mission is shown in Fig. 2. The discriminator is designed to
evaluate the similarity between the output of generator and
the desired rain-free image, as shown in Fig. 2.
HREN Since BEN is designed to extract the background
information, both rain and fog information are removed. To
control the rain rendering with scene-specific fog effect, we
design HREN to eliminate the high frequency rain streaks
in the input rain image and provide the image containing
both background and fog information to MCN.
MCN MCN is the main network of rain control, which
is also based on GAN [11]. The generator is composed
of a multi-level interpolation U-net, PGM and NBM. The
discriminator in MCN is designed to evaluate the similarity
between the output of generator and the desired level of rain
image, with the same discriminator architecture as BEN.

Considering that rain streaks distribute among a large
range of scales, especially for different intensities of rain
images. Existing feature interpolation methods [13, 27, 30]
only consider interpolation at a single level, lacking capaci-
ties to utilize features at different scales. To build a network
that could control the rain at different intensities, we intro-
duce multi-level interpolation at the skip layers of different
scale levels in the U-net network, as shown in Fig. 2.

PGM is proposed for interpolation, enabling the RICNet
to be trained with discrete rain intensities and generate con-
tinuous intensities by weighting between the neighboring
gates during testing. As shown in Fig. 2, PGM is intro-
duced at the skip layers of different feature scales. Each

PGM is composed of multiple branches targeting differ-
ent rain intensities. The process of each PGM can be ex-
pressed as fPGM(B) =

∑
i giti(B),

∑
i gi = 1, where

B represents the rain features in the skip layer, t(·) de-
notes 1 × 1 convolution for turning B to the features for
a specific rain intensity level. gi is the gating parameter
used to control the weighting degree of each branch. Dur-
ing training, N discrete intensity levels of output rain (i.e.
i = 0, 1, ..., N − 1) are controlled by binary gating param-
eters {gi} (i ∈ 0, 1, ..., N − 1). For each level of input
rain, different levels of output rain are trained respectively,
with only the i-th branch corresponding to the output level i
opened (i.e. gi = 1), and the rest closed. During testing, our
RICNet can recognize the intensity of input rain automati-
cally, and output user-specified intensity of rain by linearly
combining the two neighboring branches using decimal gat-
ing parameters. Specifically, for any target rain intensity
level s that is between two specific discrete levels, e.g. i-th
and i+ 1-th, the output rain image can be obtained by

f testPGM(B) = giti(B) + gi+1ti+1(B),

s.t. gi =
li+1 − ls
li+1 − li

, gi+1 =
ls − li
li+1 − li

,
(1)

where li, li+1 and ls denote the corresponding rain intensity.
Inspired by the fact that noise can be effective in gener-

ating textures with randomness and high diversity [18, 24],
we introduce NBM into MCN to further boost the distribu-
tion randomness and texture diversity of rain streaks. As
shown in Fig. 2, zero-mean Gaussian noises are added to all
pairs of encoder-decoder convolution layers and all skip lay-
ers in MCN. Furthermore, since scaling of noise intensity
has already been demonstrated to be useful for the adjust-
ment of interpolation effect [18, 24], we propose to control
the scaling factor of noise to assist MCN in controlling the
rain intensity. The noise image is firstly repeat-expanded



to the same channel as the features, and multiplied by the
scaling parameter that corresponds to the target rain inten-
sity level. Then each channel of the noise image is multi-
plied by a learnable factor, after which the weighted noise
image is added to the features in MCN. During training,
when the target output rain intensity changes from level 0
to N − 1, the noise is multiplied with scaling parameter of
0, 1/(N − 1), 2/(N − 1), ..., 1. In the testing process, to
generate rain images of intensity level s between intensity
level 0 and N − 1, the noise is multiplied by s/(N − 1).

3.2. Loss Function

(a)

(c)(b)

压缩图片大小

Figure 3. (a) Output rain image without HOG loss. (b) Ground
truth rain image. (c) HOG comparison of (a) and (b).

HOG Loss To render different levels of rain, scene-
specific physical properties such as the direction of rain
should be retained. However, due to the difficulty in identi-
fying various streak directions of different inputs, disori-
entation occurs, as shown in Fig. 3(a). In order to pre-
serve the scene-specific direction information, we refer to
the method of histogram of oriented gradient (HOG) [6],
which is adopted to calculate the orientation of rain streaks
in deraining studies [3, 32, 40]. Different from these meth-
ods, we propose to utilize HOG as one of the loss functions
to enforce the same orientation distribution between the net-
work output and the ground truth rain streaks, avoiding the
inconsistency shown in Fig. 3(c).

In practice, we adopt Sobel operator to compute the hor-
izontal and vertical gradient map (Gx, Gy). The gradient
orientation is computed by θ = tan−1 Gy

Gx
. Since the dis-

tribution of the direction of rain is mostly consistent in the
local region, we divide the image into K cells of the same
size. In each cell, we calculate the weighted histogram of
orientation with orientation [0, π) divided into M bins. The
weight is the length of the gradient, i.e. G =

√
G2

x +G2
y .

For better invariance to noise and illumination, the origi-
nal orientation histogram Oorg is normalized with L1-norm,
O = Oorg/ ‖Oorg‖1. We denote the normalized HOGs of
ground truth and output in the k-th cell as Ogt

k and Oout
k .

The difference between the two distribution in the k-th cell
is measured with Kullback Leibler (KL) divergence [20].

To measure the direction distribution similarities over the
whole image, we adopt the mean of KL divergence of the
K cells as the HOG loss in our network,

Lh =
1

K

∑
k

KL(Ogt
k ,O

out
k ). (2)

(d) (e)

(b) (a) 

(c) 

Figure 4. (a) Output rain image without autocorrelation loss. (b)
The rain streak image of (a). (c) The 2-D autocorrelation map of
(b). (d)(e) The autocorrelation along the x and y direction.

Autocorrelation Loss During experiments, we find that
the generated rain streaks may repeat periodically in hor-
izontal and vertical directions, as shown in Fig. 4. In or-
der to solve this problem, we design a novel autocorrelation
loss to eliminate the repetitive patterns. In order to reduce
the influence of the background, especially the scenes with
periodic patterns, rain mask is obtained by subtracting the
background from the input rain image. Since rain streaks
are near vertial strips, in this paper, we compute the auto-
correlation of its horizontal gradient (shown in Fig. 4(b)).

In experiments, we observe that significant peaks only
occur in the horizontal and vertical directions, so we only
take the autocorrelation coefficients along the two direc-
tions (i.e., acx, acy) to construct the loss. To eliminate the
scale difference between scenes, acx and acy are normal-
ized to 0-1, as shown in Fig. 4(d)(e). As observed, peaks
caused by the repetition of rain streaks are obvious (marked
with red points). To reduce the repetition, the top P peaks
are detected and penalized by our autocorrelation loss,

Lac =
∑
x,y

P∑
i=1

acx,y (maxi)−meanacx,y

P
, (3)

where maxi represents the index of the top i-th coefficient.
meanacx,y denote the mean values of acx and acy . Consid-
ering that the coefficients close to the zero point are high,
which effects the calculation of mean value, the near-zero
regions of acx and acy are not accounted for mean compu-
tation (the near-zero region is defined from zero point to the
first local minimum).

Overall Loss The training process of RICNet contains
two stages: I. First the BEN is trained for extracting the
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Figure 5. Illustration of training strategy. (a) Training curve com-
parisons among (b) random training, (c) incremental training and
(d) our decremental training. E represents the epoch interval to
update the rain intensity of the input samples.

background information. II. With the parameter of BEN
fixed, HREN and MCN are trained together to generate
clear foggy image and rain image of a certain level.

Specifically, in stage I, the coarse and fine networks in
the generator of BEN are trained together, outputting rain-
free images of C1 and C2, which are constrained with the
GAN loss LI

g, MAE loss Ll1, SSIM loss Ls [33], and per-
ceptual loss Lp [17]. Denoting the ground truth background
image as Cgt, the loss for training GAN in BEN is

LI
G = LI

g + λIl1 [Ll1(C1,Cgt) + Ll1(C2,Cgt)]

− λs [Ls(C1,Cgt) + Ls(C2,Cgt)]

+ λp [Lp(C1,Cgt) + Lp(C2,Cgt)] ,

(4)

where LI
g = log(1 − Db(C2)) represents the adversar-

ial loss from discriminator Db. The discriminator network
Db of BEN is trained with the discriminator loss [11], i.e.
LI
D = −log(Db(Cgt))− log(1−Db(C2)), where λIl1, λs,

λp are the corresponding weighting coefficients.
In stage II, HREN and MCN are trained together and the

corresponding generator loss is

LII
G = LII

g + λhLh(I, Igt) + λacLac(I, Igt)

+ λIIl1

[
Ll1(I

HREN, IHREN
gt ) + Ll1(I, Igt)

]
,

(5)

where LII
g = log(1 −Dm(I)). I and Igt are the output of

MCN and the ground truth rain image of a certain level. Lh

and Lac denote the HOG and autocorrelation loss. IHREN

and IHREN
gt denote the output and ground truth of HREN

with only background and fog information. λIIl1, λh, λac are
the weighting coefficients of the corresponding loss func-
tions. The discriminator network Dm of MCN is trained
with: LII

D = −log(Dm(Igt))− log(1−Dm(I)).

3.3. Decremental Training Strategy
For training RICNet, we input the rain image samples

of a certain intensity level i (i ∈ {0, ..., N − 1}) and
train the network to output rain images of different levels
j (j = {0, ..., N −1}) of intensities (practical rainfall range

from 0 mm/hr to 200 mm/hr). Empirically, we found that
randomly selecting the rain intensities of the input samples
for training yields inferior and oscillating performance, as
shown in Fig. 5(a). To address the issue, we propose to train
the network using ordered inputs to improve the effective-
ness and robustness of the learning. In this paper, inspired
by the curriculum learning [2], we propose a decremental
training strategy that trains the samples with the largest rain
intensity first, and adds a smaller rain intensity every E
epochs. After all the intensities are involved in training, the
network trains the samples randomly. We also compared the
strategy with the random training and incremental training
(which has been used in object detection with rain [12]), as
show in Fig. 5(a), the proposed training strategy can greatly
improve the convergence speed and final performance.

4. Experiment Results

4.1. Implement Details

Datasets In our experiments, we construct a dataset
named RainLevel5 to train our RICNet as shown in Sup-
plementary Fig. 2. The clean images are from Cityscapes
dataset [5] and we synthesize 5 levels (25, 50, 75, 100 and
200mm/hr) of rain images with the methods in [1, 12]. The
dataset contains 29750 rainy/clean image pairs, including
26870 pairs for training and 2880 pairs for testing. Besides,
to simulate the rain realistically, we render the fog corre-
sponding to different levels with the method in [12]. We
further perform comparisons on a few synthetic datasets,
i.e., Rain12000 [38], Rain800 [39], Rain200H [36], and
real-world data from SPAData [29] (containing rainy/clean
image pairs) and internet (without ground truth). Addition-
ally, to control rain images with different hues, we randomly
transform the rain images into the other hue during training
of stage II, as is shown in Supplementary Fig. 3.

Training Parameters We adopt Adam [19] optimizer,
with the learning rate initialized as 0.0002. BEN is trained
with the learning rate divided by 2 after 10 epochs. The total
training epoch of BEN is 15. HREN and MCN are trained
for 6 epochs. In HOG loss, K and M are 512 and 180,
and the patch size is 32×32. Larger K and M improve per-
formance slightly at the cost of higher computation, while
smaller values cause inferior results. In autocorrelation loss,
P is 10, and smaller P fails at eliminating repetitiveness
with large interval periods, while a very large P makes no
sense since it is unlikely to appear a very large repetitive
period in our experiment. Weighting coefficients λIl1, λs,
λp, λIIl1, λh, and λac are set as 100, 100, 300, 100, 0.01 and
10 empirically. E is 1 and larger E causes overfitting of
currently trained levels, which constraints the convergence
of loss. The experiments are implemented on PyTorch [25]
platform with an NVIDIA GeForce RTX 2080 GPU.
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Figure 6. Deraining results on synthetic images of (a) RainLevel5, (b) Rain200H [36] and (c) real images.

Table 1. Derained comparisons on synthetic datasets (PSNR/SSIM).
Methods RainLevel5 Rain12000 Rain800 Rain200H SPAData

RESCAN [23] 24.09/0.777 30.51/0.882 25.00/0.835 28.02/0.862 38.11/0.971
UMRL [37] 23.13/0.804 29.77/0.920 24.41/0.829 27.06/0.847 35.06/0.941
PReNet [26] 32.07/0.979 30.03/0.889 24.81/0.851 28.56/0.880 40.16/0.982
SEMI [34] 21.08/0.727 26.05/0.822 22.35/0.788 22.17/0.719 35.31/0.941

JORDER [35] 32.88/0.965 24.32/0.862 26.73/0.869 23.45/0.749 40.78/0.981
HRGAN [21] 35.99/0.980 30.87/0.891 26.80/0.853 28.75/0.882 37.45/0.952
RCDNet [28] 21.34/0.860 26.44/0.816 23.75/0.842 28.82/0.893 41.47/0.983
MSPFN [15] 26.27/0.856 32.39/0.916 27.50/0.876 26.97/0.835 37.87/0.957

Ours 37.81/0.985 32.67/0.892 27.11/0.869 28.84/0.893 37.98/0.972

4.2. Rain Removal
We evaluate deraining performance of BEN in our RIC-

Net on both synthetic and real data with the state-of-the-
art (SOTA) deraining methods. The comparisons on syn-
thetic dataset are shown in the Table 1 and Fig. 6(a)(b).
For fair comparison, all models are re-trained on our Rain-
Level5. As shown, our method can handle different types of
rain streaks, and recover the background details with higher
quality. Though specific complexity of RainLevel5 (e.g.
containing fog of different levels) limits the performance
of some SOTA methods, they show good results in other
datasets and our method performs comparably.

The comparisons on real data are shown in Fig. 6(c). As
shown, our method could recover the background with high
fidelity, while MSPFN [15] leaves some rain streaks unre-
moved and RCDNet [28] produces unnatural white patches
in the background. Besides, our method has a good defog-
ging effect, which could further improve the visual quality
of the generated rain images. In addition, the ablation study
in rain removal is conducted in Supplementary Table 1.

4.3. Rain Control
Experiments on Synthetic and Real Data The rain con-
trol results on synthetic data of RainLevel5 are shown in
Fig. 7, which demonstrates the ability of our RICNet to
both achieve bi-directional rain control and preserve scene-
specific rain characteristics. With a rain image of any in-
tensity as input (marked with yellow box in Fig. 7), our

network can output rain images of both lower and higher
intensities. By which case, bi-directional effects of control-
lable rain removal and rendering can be achieved. Addi-
tionally, scene-specific rain characteristics can also be pre-
served. The appearance of raindrops in transformed rain
images are consistent with the input. The orientation and
distribution of the input rain are also well learned and pre-
served. Since the intensity of fog and rain is highly related,
as shown in Supplementary Fig. 21, the fog intensity is au-
tomatically adjusted during the control of the rain intensity.

We further demonstrate the bi-directional and continu-
ous rain control capability of our method on the real rain
images. As shown in Fig. 8, our RICNet can remove or
generate the rain with arbitrary intensities and preserve the
scene-specific rain characteristics as the input rain images.
More control results are shown in Supplementary Fig. 6.

Moreover, continuous intermediate levels can also be
achieved via setting the gating parameters gi as discussed
in Eq. (1). As shown in Fig. 9, with the intensities of in-
put rain images set as 100 mm/hr (Fig. 9(a)) and 25 mm/hr
(Fig. 9(b)), intermediate intensities of rain images can be
generated between 100-200 mm/hr and 25-50 mm/hr. The
interpolated results show continuous transformation and
well-preserved characteristics with the input rain images.

Comparison with other Interpolation Methods To fur-
ther demonstrate the interpolation effectiveness of our RIC-
Net, we conduct comparisons with other interpolation meth-
ods [27,31]. Specifically, since [27] and [31] can only trans-
form between two effects, we set the Effect 1 and Effect
2 as the generation of rain with intensity of 25mm/hr and
200mm/hr. As for [27], first the main network is trained to
realize Effect 1. Then main network is fixed, and tuning-
blocks are added and trained to realize Effect 2. During
testing, the interpolation between Effect 1 and 2 can be

1Most of the fog in rain is composed of the distant raindrops, which
cannot be seen clearly.
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Figure 7. Rain control results on RainLevel5. Yellow boxes mark the input rain images and others are the generated rain images.

input renderingremoval

Figure 8. Bi-directional and continuous rain control results on real rain images.
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Figure 9. Continuous interpolation results within the range of rain
intensities (a) 100 to 200mm/hr and (b) 25 to 50mm/hr. The inter-
polated rain images are marked with green boxes.

achieved by adjusting the participation degree of tuning-
blocks. The interpolated results are shown in Fig. 10(b).

As observed, since the interpolation is implemented in low-
level feature space, the appearance of rain is not natural
enough. As for [31], we train our network, without PGM
and NBM, separately to realize Effect 1 and 2 respectively.
Via interpolating the two network parameters, we can get
the intermediate effects, as shown in Fig. 10(c). We can see
that the rain intensity of the result is smaller than the target,
and the rain appearance is also unnatural. In comparison,
our method could enable more natural interpolation effects.

Ablation Study We conduct an ablation study to demon-
strate the importance of multi-level interpolation. In com-
parison, we only interpolate features in low and high lev-
els through only open the PGMs in skip layers of the first
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Figure 10. Comparisons between (a) our and other interpolation
methods, i.e. (b) [27] and (c) [31]. Input rain intensity: 50 mm/hr.
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Figure 11. Results comparison of interpolation with (a) both low
and high levels, (b) only low levels, and (c) only high levels.

4 pairs or the last 4 pairs of convolution layers of MCN.
As shown in Fig. 11, large rain streaks tend to be distorted
with only low-level interpolation (Fig. 11(b)). The network
with only high-level interpolation fails to generate small
rain streaks (Fig. 11(c)) and produces few artifacts. By con-
trast, the result with both low and high levels interpolation
(Fig. 11(a)) is better at generating different scales of rain
streaks, with a natural visual quality.

(a)

(b)

100mm/hr 150mm/hr 200mm/hr

Figure 12. Comparison between (a) with and (b) without NBM.

We further study the effectiveness of the noise boosting
module (NBM) in MCN. As shown in Fig. 12, the interpo-
lated images (marked with the green boxes) show more di-
versified streak texture and natural distribution with NBM.
Besides, results with NBM show better consistency in the
changing trend of rain intensity, which further demonstrate
the effectiveness of NBM in the control of rain intensity.

To demonstrate the effectiveness of our HOG loss and
autocorrelation loss, we train RICNet with or without the
corresponding loss. Figs. 13(a)(b) show that the HOG loss
could ensure to preserve the orientation distribution of rain.
Figs. 13(c)(b) demonstrate the effect of autocorrelation loss
in suppressing repetitive rain streaks.

The effectiveness of random, incremental (training with
input samples from 25 mm/hr to 200 mm/hr) and our decre-
mental (training with input samples from 200 mm/hr to
25 mm/hr) training strategies are compared. As shown in
Fig. 14, both outputs of random and incremental training
show unnatural rain appearance. In comparison, the result
of our decremental training demonstrates its superiority in

16

(a) (b) 

(d) (c) 

Figure 13. Comparison of results w/o HOG loss and autocorrela-
tion loss. (a) With HOG Loss, (b) without HOG Loss, (c) with
Autocorrelation Loss, and (d) without Autocorrelation Loss.

38

(a) (b) (d) (c) 

Figure 14. Comparison of training strategies. (a) Input rain image
(50mm/hr), (b)-(d) results of output rain images at 87.5mm/hr with
random, incremental and decremental training strategies.

generating more similar rain appearance with the input.
We conduct numerical comparisons of rain rendering

techniques in Table. 2. As shown, each technique helps en-
hance the perceptual effect and feature similarity, and some
techniques (e.g., HOG loss, multi-level interpolation) show
more contributions for boosting photorealism.

Table 2. Comparisons of rain rendering techniques.

Metric Ours Level Without
NBM

Loss Training Strategies

only high only low
without
HOG

without
autocorr random incremental

NIQE 3.985 5.132 4.974 4.955 5.612 4.842 4.975 5.031
FSIM 0.850 0.752 0.812 0.819 0.785 0.802 0.823 0.793

5. Discussion and Conclusion
In this paper, we propose RICNet to realize bi-

directional and continuous rain control. Inputted with a rain
image, RICNet could realize both removal and rendering
of rain with scene-specific characteristics preserved. The
HOG and autocorrelation loss are introduced to enhance
the consistence in orientation and suppress repetitive rain
streaks. To facilitate convergence with robustness and ele-
gant performance, a decremental training strategy is intro-
duced. Experiments on both synthetic and real data demon-
strate the promising performance of the proposed method.
Furthermore, our study provides a unique insight into gen-
erating rain based on the rain texture in input rain images,
which provides a new perspective for rain rendering.
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